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Abstract

We present new algorithms for a distributed model for graph computations motivated by limited
information sharing we first discussed in [20]. Two or more independent entities have collected
large social graphs. They wish to compute the result of running graph algorithms on the entire set
of relationships. Because the information is sensitive or economically valuable, they do not wish
to simply combine the information in a single location. We consider two models for computing
the solution to graph algorithms in this setting: 1) limited-sharing: the two entities can share only
a polylogarithmic size subgraph; 2) low-trust: the entities must not reveal any information beyond
the query answer, assuming they are all honest but curious. We believe this model captures realistic
constraints on cooperating autonomous data centers.

We have algorithms in both setting for s-t connectivity in both models. We also give an
algorithm in the low-communication model for finding a planted clique. This is an anomaly-
detection problem, finding a subgraph that is larger and denser than expected. For both the low-
communication algorithms, we exploit structural properties of social networks to prove perfor-
mance bounds better than what is possible for general graphs. For s-t connectivity, we use known
properties. For planted clique, we propose a new property: bounded number of triangles per node.
This property is based upon evidence from the social science literature.

We found that classic examples of social networks do not have the bounded-triangles property.
This is because many social networks contain elements that are non-human, such as accounts for
a business, or other automated accounts. We describe some initial attempts to distinguish human
nodes from automated nodes in social networks based only on topological properties.
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Chapter 1

Introduction

Consider two entities, Alice and Bob, who autonomously observe the world, collecting information
on social relationships, which each represents as a social graph. Alice would like to combine her
information with Bob’s to answer a query about the full set of relationships. It is in Bob’s best
interest to cooperate, since he may need Alice’s help in the future. But there are barriers to total
information sharing, which we model in two ways: 1) limited-sharing: Alice and Bob can share
only a polylogarithmic size subgraph; 2) low-trust: Alice and Bob must not reveal any information
beyond the query answer, assuming they are both honest but curious.

We are motivated by recent trends in data collection over large social networks. Specifically, we
consider a small number of autonomous data centers that are collecting data about a social network.
Periodically, these centers may want to collaborate to solve a computational query. However,
data is a critical resource, so the centers want to answer the query while sharing as little data as
possible.1

Brickell and Shmatikov [3] were similarly motivated when they conducted related work using
a different model. They provide several compelling examples involving commercial entities that
must evaluate the consequences of a potential merger, or coordinate in some useful way without
revealing private details. Networking companies would be interested in measuring the efficiency
of joint infrastructure before committing to a merger, shipping companies would similarly need
to know the effects of merged capacities on efficient routing, and social networking websites may
wish to collaborate to compute more accurate statistical measures of their users’ behavior without
revealing private information.

Our cooperative computing problem has overlap with two mature research areas that deal with
privacy: secure multiparty computation and differential privacy. In secure multiparty computation
(MPC), a set of m parties, each of whom has a private input, want to compute an m-variate function
over their inputs, without revealing any information about their inputs (see e.g. [18] for a survey
of MPC). A novelty of our problem when compared to most results in MPC is that the size of
the inputs held by the parties are very large. In differential privacy, a single entity holds all the
data, and the goal is to answer queries as accurately as possible, while minimizing the chance
of leaking information about individual records in that data (see e.g. [10]). By contrast, in our
problem, multiple entities hold the data. The entities seek to minimize not the chance of identifying

1We imagine that user data may be valued more by data centers than it is valued by individuals, since the data
centers can monetize that data.
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individual records in the data, but rather the total amount of information revealed about their own
data set. Also, they require that the query is answered exactly.

The term “data center” frequently refers to a distributed set of resources owned by a single
entity such as Google, cloud systems, or providers of web services. Cooperation in such settings
is a given, with research focusing on providing quality of service while minimizing energy or
other costs. See for example these surveys [1, 17]. In our setting, the data centers are owned
by autonomous, potentially competing parties who nevertheless wish to compute cooperatively in
some cases while minimizing the loss of proprietary information.

1.0.1 Our Model

Our model assumes a small number of autonomous data centers. For simplicity of discussion here,
we will assume two centers, but our results for s-t connectivity generalize to any small constant
number of centers. Let Ga be Alice’s graph and Gb be Bob’s graph. Alice and Bob wish to perform
computations on the graph GU = Ga ∪Gb. Let n be the number of nodes in GU . Alice and Bob
build their graphs by observing a common world graph G. The fundamental observation is an edge
representing a relationship between two people. Alice and Bob know nothing about each other’s
graphs. However, the nodes come from a shared namespace, so if Alice gives Bob an edge (or vice
versa), he will recognize the nodes if he has seen them before, and therefore he knows where that
edge fits into his graph.

The world graph G is a social network, and therefore has topological properties of a social
network. In general, Alice and Bob can each sample from this graph according to arbitrary distri-
butions. Thus theoretically, Ga, Gb, and GU do not necessarily inherit social network topological
properties in the worst case. However, every example of a social network that researchers have
observed to determine the currently accepted set of properties of such networks is itself a sampling
of the world graph of all human relationships. We assume Alice’s and Bob’s samples are gathering
in ways that also produce these classic properties.

1.0.2 Results

In the s-t connectivity problem, we wish to find a path between two specified vertices s and t.
Consider the graph in Figure 1.1(b). There is a path from vertex 37 to vertex 9. If that graph is
distributed to three data centers as showing in Figure 1.1(a), then no one data center has enough
information to determine that these two nodes are connected. That conclusion requires an edge
from each of the data centers. Thus the data centers working together can compute a path that
none can compute on its own.

We published results for computing s-t connectivity in both the low-communication model and
in the low trust model in [2]. That paper includes a discussion of related models. Here is the
relevant part of the abstract from [2]:
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Figure 1.1: An example of a distributed graph (from [20]). The graph in on the bottom is dis-
tributed among three data centers shown at the top. Only by combining information from all three
centers can one infer that nodes 37 and 9 are connected.

In the limited-sharing model, our results exploit social network structure. Standard
communication complexity gives polynomial lower bounds on s-t connectivity for
general graphs. However, if the graph for each data center has a giant component and
these giant components intersect, then we can overcome this lower bound, computing
s-t connectivity while exchanging O(log2 n) bits for a constant number of data centers.
We can also test the assumption that the giant components overlap using O(log2 n) bits
provided the (unknown) overlap is sufficiently large.

The second result is in the low trust model. We give a secure multi-party computation
(MPC) algorithm that 1) does not make cryptographic assumptions when there are 3 or
more entities; and 2) is efficient, especially when compared to the usual garbled circuit
approach. The entities learn only the yes/no answer. No party learns anything about
the others’ graph, not even node names. This algorithm does not require any special
graph structure. This secure MPC result for s-t connectivity is one of the first that
involves a few parties computing on large inputs, instead of many parties computing
on a few local values.

In Section 2 we give an efficient algorithm for finding a planted clique. A clique is a graph
with all possible connections. The planted-clique problem is motivated by anomaly detection:
finding subgraphs that are denser than expected. Finding the largest clique in a general graph is
NP-hard and polynomially hard to approximate [11]. However, we exploit properties of social
networks to find a planted clique that is larger than the largest clique a social network would
natively have. Finding (large) planted cliques is made particularly tractable by our assumption,

11



defended in Section 2, that the number of nodes in the largest clique in a social network is bounded
by a constant. Intuitively, this is motivated by human limitations on time and attention, and the
need to cultivate strong relationships.

More specifically, we make two assumptions about the social network: 1) the maximum de-
gree is O(n1−ε), for ε > 0, a standard assumption for social networks [4, 6] and 2) the clustering
coefficient of a node with degree d is O(1/d2). The second assumption is equivalent to having a
bounded number of triangles per vertex, and it implies a constant-sized maximum clique. Our goal
is to find the planted clique while minimizing communication between the players.

We give a protocol that provably ensures with high probability (whp) that both players find
the clique, while requiring at most polylogarithmic communication, and polynomial computation.
We believe our algorithm can be adapted to find a more generalized planted dense graph such as
a γ-quasi-clique. A γ-quasi clique is a graph with at least a γ fraction of the maximum possible
number of edges.

In Section 3 we describe why social network snapshots available on the web typically do not
have one of the properties required for correctness of the planted clique algorithm. Social net-
works are a combination of a human sub-network and an automated subnetwork. Accounts run
by machines are not subject to the same limitations humans are. We describe some initial work
to extract the human subcomponent of a network. We are initially motivated by our need for real
data to validate the algorithm from Section 2. However, there are other applications for methods
to classify nodes in a network as human vs non-human. For example, spam sub-networks will
generally consist of non-human nodes.

12



Chapter 2

Finding a Planted Clique

In this section, we describe, and prove/sketch the correctness of, an algorithm for finding a planted
clique in a social network. Let n be the number of nodes in the social network. We assume that a
subset of O(lnn) nodes, S, are chosen uniformly at random and that edges are added among these
nodes to form a clique. The adversary distributes the edges arbitrarily to Alice and Bob subject
to the constraint that at least one player knows each planted clique edge. Some edges of the base
graph may be in neither graph, but this only makes the problem easier.

For a node v with degree d, the clustering coefficient of that node is

Number of triangles containing node v(d
2

) .

The denominator is the number of possible triangles on node v, one for each pair of neighbors. Thus
the clustering coefficient for a node v is the fraction of possible triangles that node v participates
in. A high clustering coefficient (close to 1) implies that node v’s neighbors are strongly connected
to each other.

For our planted clique algorithm, we make two assumptions about the social network: 1) the
maximum degree is O(n1−ε), for ε > 0, a standard assumption for social networks [4, 6] and 2)
the clustering coefficient of a node with degree d is O(1/d2). The second assumption implies a
constant number of triangles per node.

We give an algorithm to find a planted clique of size O(logn) in an n-node graph distributed
between two data centers using polylogarithmic communication. This appears to be much easier
than finding cliques in half-dense non-distributed Erdös-Renyi graphs, where the largest clique is
of size O(lnn), but the best algorithms can only find planted cliques of size Θ(

√
n/e) [8].

2.0.3 A new social network property

We first justify the second assumption. Sociologists have argued that the number of strong links
that a node can have in a social network is bounded, even for online social networks [9]. That is,
the increased power of computers and the internet cannot overcome basic human limitations on
time and attention paid to another person. Other than immediate family ties, which are bounded,
strong links between people generally require consistent effort over time.

13



Easley and Kleinberg [7] argue the triadic closure property: if node v has a strong link to node
u and node v has a strong link to node w, then nodes u and w are more likely to be connected, at
least weakly, than a random pair of nodes in a network. Easley and Kleinberg give three reasons.
The first is opportunity. Because node v knows, and presumably frequently interacts with, node u
and w, (s)he has opportunities to introduce u and w to each other. The second reason is transitive
trust. Nodes u and w both trust node v. Therefore, they are likely to pay more attention to each
other when introduced by a mutual trusted friend. The third reason is social stress. This applies
more to some groups, such as teenage girls, than to others. If node w is spending time with node u,
then she is not spending time with node w and vice versa. This causes stress on both relationships.
It is frequently less stressful for node v to do things with both u and w than to exclude one of them.

We posit that the converse of the triadic closure property is also true. That is, we posit that
if one or more of the links (v,u) and (v,w) are weak, then there is no (or significantly reduced)
increased probability that node u and w will become connected through their relationship with
node v. All three reasons for node v to introduce nodes u and w decrease with decreased strength
of ties. Kossinets and Watts [14] corroborate this with an experiment involving students. Their
data shows that the probability of a new relationship mediated by a mutual friend/acquaintance is
directly proportional to the average strength of the ties to the third (mutual friend) node. Thus we
assume that if a node has a constant amount of resources for such facilitation and most are devoted
to strong links, then as degree increases, the probability of facilitating a relationship between non-
strong pairs decreases quadratically. The assumption that the clustering coefficient of a degree-d
node O(1/d2), is also a property implied with high probability from the per-degree clustering
coefficient expression posited by Kolda et. al. [13].

2.1 Algorithm Sketch

Let Ga be Alice’s graph and let Gb be Bob’s graph. Alice and Bob run the following algorithm.
They also run the algorithm with their roles reversed and return the largest of the two cliques. If
any set is too large to send (super-polylogarithmic), just stop (the adversary gave Alice too few
triangles from S).

The Planted-Clique-Finding Algorithm:

1. Alice finds the subset of nodes, called Qa, with maximum triangle density. Triangle density
is the number of triangles divided by the number of nodes. We can find Qa in polynomial
time using a triangle-density version of the edge-density linear program in [5].

2. Alice finds the set of nodes, N̄a(Qa), each adjacent to at least half the nodes in Qa in the
graph Ga. She sends Qa and N̄a(Qa) to Bob.

3. Bob computes N̄b(Qa), the set of nodes each adjacent to at least half the nodes Qa in Gb. Let
VC = Qa∪ N̄a(Qa)∪ N̄b(Qa). Bob finds the set of edges, Eb, induced by the nodes VC in Gb.
He sends Eb and N̄b(Qa) to Alice.

14



4. Alice finds Ea, the set of edges induced by Vc in Ga.

5. Alice finds the maximum clique in the graph (VC,Ea∪Eb) using any algorithm guaranteed
to find the maximum clique such as [19].

In step 1, in practice, one might like to use a faster approximation. In [5], Charikar gives a
greedy 2-approximation for finding a maximum edge-density subgraph. The obviously generaliza-
tion, using triangle counts of a node instead of degree, gives a three-approximation for finding a
maximum-triangle-density subgraph. The proofs in [5] extend to triangles with no major changes.

2.2 Correctness Sketch

Let S be the nodes in the planted clique. We first show using Ramsey theory that one of Alice or
Bob will receive Θ(ln3 n) triangles of S.

Lemma 1. At least one player gets C′log3n of the triangles in S for some constant C′.

Proof. Consider the set of 6-cliques within the planted clique S. For notational convenience let
x denote the number of nodes in S. Color the edges in S red or blue depending on whether they
belong to the subgraph possessed by Alice or Bob respectively. If an edge belongs to both Alice
and Bob, color it arbitrarily. A known Ramsey theory result is that R(3,3) = 6. That is, any
red-blue coloring of a 6-clique has at least one monochromatic triangle in it.

Now, let x = logn be the size of the planted clique. Then there are
(x

6

)
= Θ(x6) 6-cliques,

each of which must have a monochromatic triangle. Each triangle can be in at most
(x

3

)
6-cliques,

because that is the number of ways to choose the remaining three vertices. Thus, the number of

monochromatic triangles is at least (
x
6)
(x

3)
= Θ(x3). Since x = logn, overall this is Θ(log3 n).

We assume without loss of generality that Alice receives this number of triangles. Any node not
in S is involved in O(1) triangles before the clique planting, by our clustering-coefficient assump-
tion. Using the maximum-degree assumption, simple probability, the uniform random selection of
clique nodes, and the union bound, we now show that any node not in S has at most a constant
number of edges into S whp. For ease of exposition, we use ε = 1/2 in our maximum-degree
assumption. We could prove a similar theorem for any maximum degree of the form O(n1−ε), for
ε > 0.

Lemma 2. With high probability, for any node v /∈ S, the number of edges from v to S is O(1)

Proof. Fix a node v and let X be a random variable giving the number of edges from v to S. By
assumption, the maximum degree of any node in G is

√
n. So X is the sum of a set of at most

√
n
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independent indicator random variables that are 1 with probability (C lnn)/n. Thus

Pr(X ≥ λ ) ≤
(√

n
λ

)
((C lnn)/n)λ

≤
(√

ne
λ

)λ (C lnn
n

)λ

≤
(√

ne
λ

)λ

((C lnn)/n)λ

≤
(

eC lnn√
nλ

)λ

Setting λ =C1 for some constant C1, we have:

Pr(X ≥ λ ) ≤
(

eC lnn√
nλ

)λ

=

(
eC lnn
C1
√

n

)C1

= e(1+ln(C/C1)+ln lnn−1/2lnn)C

≤ e−C2 lnn

where the last line holds for any constant C2, for C1 and n sufficiently large.

Now let ξ be the event that for any node v that is not in S, v has at least C1 neighbors in S. Then
by a union bound,

Pr(ξ ) ≤ ne−C2 lnn

≤ e1−C2 lnn

= n−C3

where this holds for any constant C3 for n and C2 sufficiently large.

Corollary 1. With high probability, for any node v /∈ S, the number of triangles that contain v and
two nodes from S is O(1)

Proof. By Lemma 2, with high probability, for any node v /∈ S, v has O(1) neighbors in S. This
directly implies that v is in O(1) triangles with 2 nodes in S.
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Any node v 6∈ S has a constant number of triangles involving any node of S whp. Thus, since
it started with O(1) triangles before the clique planting, any node not in S is involved in O(1)
triangles whp.

We now argue Alice’s subgraph Qa ⊆ S whp. The subgraph Qa has triangle density Ω(ln2 n),
since Alice received Θ(ln3 n) triangles of the clique with lnn nodes. In a subgraph of optimal
triangle density ρ , any node participates in Ω(ρ) triangles. Otherwise, density would increase by
dropping that node. Since any node v 6∈ S is part of O(1) triangles, it will not be in Qa.

Since Qa has triangle density Ω(ln2 n), and the maximum triangle density of a graph with x
nodes is O(x3/x) = O(x2), we have |Qa|= Ω(lnn). In fact, |Qa|= Θ(lnn) because Qa ⊆ S.

The other nodes in S are neighbors of each node in Qa. Therefore each such node will be
adjacent to at least half the nodes in Qa in Ga and/or Gb. Thus S ⊆ Qa ∪ N̄a(Qa)∪ N̄b(Qa). If
there are any stray nodes with high degree into Qa (a low probability event), the clique-finding
operation at the end will remove them. Because |Qa|= Θ(lnn), even exhaustive enumeration runs
in polynomial time.
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Chapter 3

Human and Automated Nodes in Social
Networks

We found that social networks available in databases such as SNAP [15] do not appear to have a
bounded number of triangles per node. That is, we found that publicly available social networks
have more triangles on higher-degree vertices than predicted by [13]. We conjecture that social
media networks contain human nodes and non-human nodes. For example, many Twitter accounts
have automated behavior such as reciprocating all follower relationships [19], and businesses can
buy fake followers for a penny each [12].

We document one attempt to remove non-human nodes based only on topology. These s-
necessary triangles have properties required of vertices in large dense subgraphs such as cliques.

3.0.1 Definitions

For a vertex v, let ρv be the max x such that at least x neighbors w of v have ρw ≥ x. This is an iter-
ated notion motivated by the H-index concept used to rate publication productivity for researchers.

For a triangle t, ρt = minv∈t ρv

Ps
v = |{t : v ∈ t and ρt ≥ s}|

V s = {v : Ps
v ≥ s2}

T s = {t : ∀v∈T ,v ∈V s} (these are the necessary triangles)

Since there is a constant-sized bound on the largest clique a human should be in, we tried
removing s-necessary triangles (a condition for being in an s-node clique) for S around 500.

Aaron Kearns at the University of New Mexico created a simple classifier for human vs. non-
human nodes in Twitter based on feature vectors. He developed an automated method for popu-
lating the feature vector from the Twitter page for a given account. He is currently training and
validating the classifier against human judgement. Although initial studies for cleaning non-human
elements by removing high-s-necessary nodes seemed promising, it does not appear to be a correct
and stable solution.
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The notion of s-necessary triangle is still relevant for finding dense subgraphs. There is a new
kernel in the Mantevo [16] set of mini-applications, used to test new high-performance-computing
systems, based on finding s-necessary triangles.
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